Semester II Course Name : PROPERTIES OF MATTER AND SOUND Course code: PC2021

No. of Hours per Week	Credits	Total No. of Hours	Marks
4	4	60	100

Objective

To expose students to the fundamentals of properties of matter and sound.

Course Outcomes

СО	Upon completion of this course the students will be able to:	PSO addressed	CL
CO- 1	identify the materials suitable for construction of buildings, based on the moduli of elasticity.	PSO-4	Ар
CO- 2	paraphrase the properties of liquids and its determination.	PSO-1	U
CO- 3	analyze the physics of sound and its applications	PSO-2	An
CO- 4	integrate the concepts of acoustic comfort and better understanding of the theories used in building acoustics	PSO-3	Ар

Modules Credits: 4 Total contact hours: 60 (Including assignments and tests)

Unit	Section	Topics	Lecture hours	Learning outcome	Pedagogy	Assessment/ Evaluation
Ι	Elasticit	y				
	1	Elasticity Hooke's	2	To understand	Lecture	Evaluation
		law – Elastic moduli		the concept		through
		– Poisson's ratio –		elasticity and		short test

	2 3	Beams – Bending of beams – Expression for bending moment – Cantilever- Theory of uniform and non – Uniform bending - Determination of Young's modulus Koenig's method – Torsion of a body –	2 3	bending of beams To be able to determine the Young's modulus of the material To acquire knowledge on	Discussion with PPT illustration Lecture discussion with illustration Lecture discussion	Multiple choice questions Formative assessment I
		Expression for couple per unit twist – Work done in twisting a wire		Work done in twisting a wire		
	4	Torsional oscillations of a body - Rigidity modulus by dynamic torsion method (Torsional pendulum) and static torsion method	2	To be able to distinguish between dynamic torsion method and static torsion method	Lecture discussion	
II	Surface	Tension				
	1	Surface tension – definition – Molecular forces – Explanation of surface tension on kinetic theory – Surface energy	3	To understand the concept of surface tension according to kinetic theory	Lecture Illustration	Short test Quiz Assignment Formative
	2	Work done in increasing the area of a surface – Excess pressure inside a curved liquid surface – Excess pressure inside a spherical	3	To determine the excess pressure inside a spherical and cylindrical drops and bubbles	Lecture discussion	assessment I

		and cylindrical drops and bubbles				
	3	Drop weight method - Angle of contact- Quincke's method- variation of surface tension with temperature- Experimental determination-	3	To evaluate the principle of surface tension in liquids and understand it by practical experiments.	Lecture Illustration	
		Jaegar's method				
III	Viscosity	7				
	1	Viscosity – Co efficient of viscosity – Streamlined and turbulent motion – Critical velocity	3	To have practical knowledge on determining the coefficient of viscosity of a liquid.	Lecture with PPT Illustration	Class test Quiz Formative
	2	Rate of flow of liquid in a capillary tube – Poiseuille's formula – Viscosity of highly viscous liquid	4	To understand the concept of pressure and thrust.	Question- answer session Lecture	assessment II
	3	Terminal velocity - Stoke's method - Ostwald Viscometer - Viscosity of gas- Mayer's formula- Rankine 's method	3	To evaluate Stoke's formula and apply it in experiment to understand the viscous force of a liquid.		
IV	Sound	<u> </u>	<u> </u>		1	1
	1	Simple harmonic motion – Differential equation of motion	3	To derive the solution of the differential	Lecture Discussion	Short test

	2	executing S.H.M. – Solution of the differential equation of motion Composition of two S.H.M. along the same direction and at right angles – Lissajous figure – Free, damped and forced vibration	3	equation for a simple harmonic motion To distinguish between Free, damped and forced vibration	Lecture Discussion	Quiz Formative assessment II
	3	Frequency of vibrating string- Melde's experiment and verification of the laws of transverse vibration of a string- Sonometer – Loudness level- Sound Intensity measurement	3	To acquire skills to do experiments by sonometer and Melde's string.		
V	Ultrason	ics and Acoustics	I	L		
	1	Ultrasonics – Production – Piezoelectric crystal method – Magnetostriction method – Properties and Applications	3	To compare the methods of ultrasonic production.	Lecture with PPT	Class test Formative assessment III
	2	Acoustics of building – Reverberation- Sabine's Reverberation formula (No derivation) - Factors affecting acoustics	5	To classify sound and to examine the architectural acoustics	Brain storming session. Lecture Illustration	

of building- Sound		
distribution in an		
auditorium-		
Requisites for good		
acoustics		

PO- Program outcome; LO – Learning outcome; Cognitive Level U – Understand; Ap- Apply, An- Analyze;

Course instructors: Dr.A.Lesly Fathima and Sr.S.Sebastianmal

Semester: IIName of the Course: Allied Physics IISubject code: AP2021

No. of hours per week	No. of credits	Total no. of hours	Marks	
4	4	60	100	

Objectives

To understand the concept of strength of materials, viscous properties of liquids, heat transformation from one place to another, converting heat to do mechanical work and basic properties of light such as interference and diffraction.

Course Outcomes

СО	Upon completion of this course the students will be able to:	PSO addressed	CL
CO 1	Acquire knowledge on elementary ideas of electricity and magnetism, electronics, optics and nuclear physics.	PSO-1	U
CO 2	Analyze the concepts and study their applications in the field of electricity and magnetism, electronics, optics and nuclear physics.	PSO-2	An
CO 3	Apply their depth knowledge of Physics in day today life.	PSO-3	Ар
CO 4	Develop their knowledge and carry out the practical by applying these concepts	PSO-5	Ap

Unit	Module	Topics	Lecture hours	Learning outcome	Pedagogy	Assessment / Evaluation
Ι	Quantun	n Mechanics and Relativity				
	1	Wave mechanics – expression for group velocity – Davison Germer's experiment – Heisenberg's uncertainty principle – basic postulates of wave mechanics – time dependent form of Schrodinger equation – properties of wave function.	2	To understand the basic concepts of wave mechanics	Illustration and lecture	Evaluation through: quiz, short questions
	2	Heisenberg's uncertainty principle – basic postulates of wave mechanics – time dependent form of Schrodinger equation – properties of wave function.	2	To study the basic postulates of wave mechanics and derive Schrodinger equation	Illustration and theoretical derivation	- Multiple choice, questions , Deriving theoretical
	3	Relativity – frame of reference – Newtonian relativity – Galilean transformation equations.	2	To understand Relativity and frame of reference	Illustration, theoretical derivation and Practical	Formulas Problem solving
	4	Special theory of relativity – Lorentz transformation equations.	3	To derive Lorentz transformation equations.	Lecture and theoretical derivation	Formative assessment
II	Nuclear I	Physics				
	1	Nuclear constituents - size - mass - spin and charge - binding energy - binding energy curve	3	To understand the basic concepts of nuclear physics and study its units	Illustration, Theoretical formulation, Problem Solving	Evaluation through: quiz, short test
	2	Nuclear fission - chain reaction - nuclear reactor - radioactive disintegration	3	To determine nuclear fission	Lecture, Theoretical formulation	Assignment on applications

	3	Half life period - radiation hazards.	2	andradioactivedisintegrationTo understand thecausesofradiation hazards	Lecture, Illustration,	Formative assessment
III	Electrici	ty & Magnetism	L	•		
	1	Electric curent - current density - Ohm's law - Electrical conductivity - Kirchhoff's law	2	To understand the basic concepts of current and laws	Illustration and lecture	Evaluation through: quiz,
	2	Wheatstone's bridge - condition for balance - potentiometer - calibration of voltmeter and ammeter.	2	Tostudythebasicofpotentiometer,voltmeterandammeter	Illustration and theoretical derivation. Practical	short questions, Multiple choice, questions,
	3	Electromagnetic induction - laws of electromagnetic induction - Faraday's law - Lenz law	2	To understand the basic concepts of electromagnetic induction through experiment	Illustration, theoretical derivation and Demonstration	Deriving theoretical formulas
	4	Flemings right hand rule - self- inductance - mutual induction - coefficient of coupling.	2	To define convection mode of heat transfer and study its application	Illustration and lecture	Formative assessment
IV	Electron	nics				
	1	Formation of p-n junction diode – forward and reverse biasing of a junction diode	2	To understand the basic concepts of electronics	Lecture, Demonstration, theoretical formulation	Evaluation through: quiz, short questions
	2	Zener diode - characteristics of the Zener diode – diode as a half wave and full wave rectifiers.	2	To analyse the various aspects of zener diode	Lecture, Demonstration, theoretical formulation	Multiple choice, questions, Deriving
	3	Bipolar junction transistor –	2 21	To understand the concept of	Lecture, Demonstration,	theoretical

	4	junction transistor – CE characteristics of a transistor Field effect transistor – drain characteristics of an n channel JFET.	2	Bipolar junction transistor To understand the concept of Field effect transistor	theoretical formulation Lecture, Demonstration, theoretical formulation	formulas Formative assessment
V	Digital H	Electronics				
	1	Digital logic gates – AND – OR – NOT gate – NAND and NOR as universal gates – integrated circuit – EX-OR gate	3	To understand the basic concepts of logic gates	Illustration, Theoretical formulation, Demonstration	Evaluation through: quiz, Deriving theoretical
	2	Boolean algebra– half adder – full adder – half subtractor.	2	To understand the basic concepts of Boolean Algebra	Lecture, Demonstration, Theoretical formulation	formulas Assignment on applications
	3	Decimal system – Binary system –conversion – binary addition – binary subtraction using 2s complement – binary multiplication – binary division.	3	To understand the number system and binary operations	Lecture, Demonstration, Theoretical formulation	Formative assessment

PO- Program outcome; LO – Learning outcome; Cognitive Level U – Understand; Ap- Apply, An- Analyze;

Course Instructor: Ms.P. Aji Udhaya &Sr.S.Sebastianmal

Course Code: PNM202

No. of hours per week	No. of credits	Total no of hours	Marks
2	2	30	100

Objectives

- 1. To provide basic knowledge on the concepts of light, Electromagnetism and Electronics along with some applications.
- 2. To explain the wonders in universe using the principles of physics

. Course Outcomes

СО	Upon completion of this course, students will be able to:	CL
CO - 1	understand the principle and working of simple devices used in day to day life.	U
CO – 2	identify the symbols used for various electronic components and infer the electronic tools.	R
CO – 3	distinguish different heavenly bodies (star, planet, comets, galaxies)	R
CO - 4	recall various applications of physics concepts in everyday life	K

Teaching Plan

Total contact hours: 30 (Including lectures, assignments and tests)

Unit	Module	1	Lecture hours	Learning outcome	Pedagog y	Assessm ent/ Evaluat ion
Ι			Light		1	-
	1	Introduction - Nature and properties of light - Reflection - Colours of light - Colours of objects- Reflection in everyday life Refraction - Dispersion – Rainbow formation- Refraction in everyday life	1	To understand the fundamental concepts of light To understand the fundamental phenomenon of light	Lecture, PPT Lecture , Demon strati on	Quiz test, Formative assessme nt
	3	Laser: principle and applications - Fiber optics and its applications - Applications of light in day to day life	1	To understand the principles and applications of	Lecture	

				Laser and fiber optics in day to day life				
II	Electromagnetic Radiation							
	1	Introduction- Properties of Electromagnetic waves - EM Spectrum- Radio sub spectrum	1	To understand the basic properties of electromagnet ic radiation	Lecture , Demon strati on	Quiz test, Formative assessme nt		
	2	Cell phones, Microwaves - Microwave oven and sensor, Terahertz radiation and its applications	2	To apply electromagnet ic radiations in electrical and electronic appliances	Lecture , Demon strati on			
	3	Infra red rays in everyday life – Infra Red and microwaves - comparison - visible light waves - UV rays and its applications	1	To understand and apply the uses of microwave, infrared and visible light in day to day lie	Lecture			
III		Elect	romagne		I	I		
	1	Introduction - Magnetic materials - Magnetic Field in and around a bar Magnet, Magnetic Fields in and around Horseshoe magnet, Magnetic lines of force	2	To understand Magnetic Field and magnetic force	Lecture	Quiz test, Forma tive		
	2	Electric charge - Ohm's Law - Practical Applications of Ohm's Law in Daily Life	1	To understand Ohm's Law and the applications of Ohm's law	Lectu re, PPT	assess ment (II)		
	3	Electromagnetism- Applications of electricity and magnetism: Credit card machine, Use of electromagnetism in daily life.	1	To apply the applications of electricity and magnetism in digital technology				
IV	Basic l	Electronics		<u>l</u>	1	I		
	1	Introduction - Electronic components - Electronic tools	1	To understand and apply the basic electronic components	Lecture	Quiz test, Formativ e assessme		
				-				

					and electroni tools	c	nt (II)
	2	Semiconductors and integrated circuits - Application of electronic devices	1		To understan Ohm's Lav and th applications o Ohm's law	w PPT e	
	3	Electromagnetism- Applications of electricity and magnetism: Credit card machine, Use of electromagnetism in daily life.	2		To apply th applications of electricity an magnetism i digital technology	of d	
V	Space	Physics Introduction - The big bang theory - Stars-Star system, multiple star, supernova, black hole - solar system	1		understand stars and the ar system	Lecture	Quiz test, Formativ e assessme nt (II)
	2	Terrestrial and Jovian planets - Asteroids- Meteoroids - Meteors - Comets	2			Lecture	
	3	Galaxy - Eclipse: solar and lunar - seasons	1	To the cha		Lecture	

Semester: III Course Name: Heat and Thermodynamics Course Code: PC2031

Hours /Week	Credits	Total Hours	Marks
4	4	60	100

Semester

: II /IV

Name of the Course

: Allied Physics II : AP1721/AP1741

Subject code

Teaching Plan

Unit	Section	Topics	Lectur e	outcome	Pedagogy	Assessmen t /
Ι	Therma	Physics				
	1	Conduction in solids, Thermal conductivity, Lee's disc method- Experiment to determine the thermal conductivity -	2	To understand the basic concepts of conduction mode of heat	Illustration and lecture	Evaluatio n through: quiz, short
		Relation between thermal and electrical conductivities- Widemann– Franz law.	1	To derive the relation betwee electrical conductivity and thermal conductivity	Illustration and theoretical derivation	questions Multiple choice, questions
	2	Convection: Newton's law of cooling, Determination of specific heat capacity of liquid	2	Todefineconvectionmodeofheattransferandstudyits	Illustration, theoretical derivation	, Deriving theoretica
	3	Radiation: Distribution of energy in the spectrum of black body – Results.	3	To understand radiation mode of heat transfer and black body radiation	Lecture and theoretical derivation	l Formulas Proble m
II	Current I	Electricity		•		
	1	Ohms law- Electrical conductivity - Kirchoff's law - Wheatstone's bridge – condition for balance		To understan the basi d and features related to Current Electricity	Illustration, Theoritical formulatio n	Evaluatio n through: quiz, short test
	2	Carey Foster's Bridge – Measurement of specific resistance – Determination of temperature coefficient of resistance	1	To determine temperature coefficient of resistance	Lecture , Theoretical formulation Practical	Assignment on applications.

	3	Potentiometer - calibration of voltmeter and ammeter.	2	To understand the concept of calibrating voltmeter and ammeter using potentiometer	Lecture, Illustration, Theoretical formulatio n Practical	Problem Solving Formative
III	Electron	nagnetism	•	•		
	1	Electromagnetic Induction – Faraday's laws – Lenz's law	3	To understan the basi d and features related to	Lecture , Illustration	Evaluatio n through:

2	Self-inductance – mutual	2	TT 1 1	T (
	inductance – Experimental determination of mutual inductance- Coefficient of coupling		To apply laws of electromagnetic induction and be able to calculate self- and mutual	Lecture , Illustration ,	Multiple choice, questions	
3	Alternating current – Mean, RMS, peak - A.C. Circuits – LCR in series.	3		Illustration, Theoretical formulatio n Practical	Deriving theoretica l formulas	
Semi cor	uductor Electronics					
1	Semiconductor – pn junction s diode	2	To understan the basi d and features related to Semiconductor	Lecture , Demonstration , theoretical	Evaluatio n through: quiz,	
2	Half wave and full wave rectifier – Bridge rectifier	2	To analyse the different type of rectifiers	Lecture , Demonstration	short questions	
3	Zener diode - Regulated power supply	2	To understand the concept of using zener diode as voltage regulator	Lecture , Demonstration , theoretical	Multiple choice, questions	
	Transistor – CE Configuration	2			Deriving	
Digital F	lectronics		L		1	
1	Number systems- decimal – binary – Conversion of Decimal Number into Binary Number- binary addition, subtraction, multiplication and division	4	To understand the basic concepts and features related to binary and decimal number	Illustration, Theoretical formulatio n	Evaluatio n through: quiz, Deriving	
2	Logic gates – OR, AND, NOT, XOR, NAND and NOR gates – truth tables – NAND and NOR as Universal gates	4	To get thorough knowledge on logic gates	Lecture , Demonstration , theoretical formulation	theoretical Formulas Assignmen	
	1 2 3 Digital E 1	coupling 3 Alternating current - Mean, RMS, peak - A.C. Circuits - LCR in series. Semi conductor Electronics 1 Semiconductor - pn junction s diode 2 Half wave and full wave rectifier - Bridge rectifier 3 Zener diode - Regulated power supply Transistor - CE Configuration 1 Number systems- decimal - binary - Conversion of Decimal Number into Binary Number- binary addition, subtraction, multiplication and division 2 Logic gates - OR, AND, NOT, XOR, NAND and NOR gates - truth tables - NAND and NOR as	coupling Alternating current - Mean, RMS, peak - A.C. Circuits - LCR in series. 3 Semi conductor Electronics 1 1 Semiconductor — pn junction s diode 2 2 Half wave and full wave rectifier - Bridge rectifier 2 3 Zener diode - Regulated power supply 2 J Transistor - CE Configuration 2 Digital Electronics 1 Number systems- decimal — binary — Conversion of Decimal Number into Binary Number- binary addition, subtraction, multiplication and division 4 2 Logic gates - OR, AND, NOT, XOR, NAND and NOR gates — truth tables - NAND and NOR as 4	coupling self- and mutual 3 Alternating current – Mean, RMS, peak – A.C. Circuits – LCR in series. 3 To understand the basi concepts of alternating current Semi conductor Electronics 1 Semiconductor Flectronics 2 To understan the basi d and features related to Semiconductor 1 Semiconductor – pn junction s diode 2 To understan the basi d and features related to Semiconductor 2 Half wave and full wave rectifier – Bridge rectifier 2 To understan the different type of rectifiers 3 Zener diode - Regulated power supply 2 To understand the concept of using zener diode as voltage regulator 1 Number systems- decimal – binary – Conversion of Decimal Number into Binary Number- binary – Conversion of Decimal Number into Binary Number- binary and decimal number 4 To understand the basic concepts and features related to binary and decimal number 2 Logic gates – OR, AND, NOT, XOR, NAND and NOR gates – truth tables – NAND and NOR as 4 To or get thorough	coupling self- and mutual 3 Alternating current - Mean, RMS, peak - A.C. Circuits - LCR in series. 3 To understand the basi concepts of alternating current Illustration, theoretical 5 Semiconductor Electronics 5 Internating current Internation of practical 1 Semiconductor - pn junction s diode 2 To understan the basi d and features related to Semiconductor Lecture , Demonstration , theoretical 2 Half wave and full wave rectifier - Bridge rectifier 2 To analyse different type of rectifiers Lecture , Demonstration 3 Zener diode - Regulated power supply 2 To understand the concept of using zener diode and features related to Lecture , Demonstration 3 Zener diode - Regulated power supply 2 To understand the concept of using zener diode and features related to Lecture , Demonstration , theoretical 1 Number systems- decimal vivision 4 To understand features and features and formulatio Illustration, theoretical 2 Logic gates - OR, AND, NOT, XOR, NAND and NOR gates - tor, NAND and NOR gates - torenetical 4 To get t	

							assessment
-	-	• • • • • •		·1 T 1	\circ \mathbf{M}	D A '' TT 11	

Course instructor: Dr. R. Krishna Priya, Ms. M. Abila Jeba Queen, Ms. P.Aji Udhaya

Head of the Department: Dr.S.Mary Delphine

Semester: IV Name of the Course : ANALOG SYSTEM AND APPLICATIONS Subject code : PC1741 Teaching Plan

Unit	Modules	Topics	Lectur e	Learning outcome	Pedagogy	Assessment /Evaluation
Ι	Semicondu	ctor diodes and transistors				
	1	Semiconductor materials – Intrinsic semiconductors – Extrinsic semiconductors, N- type semiconductor – P-type semiconductor	2	Identify the different types of semiconductor materials	Illustration , Descriptive lecture	Evaluatio n through: quiz, short question s Descriptiv e answers
	2	P-N Junction, P-N Junction without external voltage, P-N junction with forward bias and reverse bias, V-I characteristics of a P-N junction diode – Static and	3	Understand the structure and functioning of a P-N junction diode under	Descriptive lecture. Practical demonstrat i on	Evaluatio n through: quiz, short
	3	Half wave rectifier, Bridge Rectifier, Calculation of ripple factor and rectification efficiency, Filters (π filter), Zener diode, Voltage regulator	3	Understand the working of rectifiers, filters and voltage regulators	PPT Illustration, Descriptive lecture. Practical	question s Descriptiv e answers Formative
	4	Junction transistor- structure, working, transistor, Amplifying action – Three configurations, Transistor characteristics (CE configuration	3	Understand the structure ,working and amplification action of a	Descriptive lecture. Practical demonstrat i on	assessmen t
II	Transistor	amplifier				

	1	Transistor biasing, selection of operating point, Bias stabilization ,Fixed bias and Voltage divider bias	3	Understand the concept of biasing and the different types of biasing	Descriptiv e lecture.	Evaluatio n through: quiz,
	2	Single stage transistor amplifier, Development of transistor AC equivalent circuit method, h-parameter equivalent circuit	3	Analyse single stage transistor using AC equivalent circuit and h	Descriptive lecture. Practical demonstrat i on	Proble m solving short question
	3	Analysis of a single state CE amplifier using hybrid models, Input and output impedance, current-voltage and power gain	3	Analyse the working of a single stage transistor and arrive at relation for various	Descriptive lecture. Theoretical formulatio n	s Descriptiv e answers Assignment Formative
III	Feedback in	n Amplifiers				
	1	Concept of feedback in amplifiers, Types of feedback, Voltage gain of amplifier	3	Understand the concept and types of feedback	PPT Illustration , Descriptive lecture.	Evaluatio n through: quiz,
	2	Effect of negative feedback on gain stability, distortion and noise, input and output impedence	4	Explain the advantages of negative	Descriptive lecture. Theoretical	short question
	3	Amplifier circuits with negative feedback, RC coupled amplifier without bypass capacitor, Emitter follower	3	Apply the concept of feedback in different practical circuits	Descriptive lecture. Theoretical formulatio n , Practical demonstrat	s Descriptiv e answers Formative
IV	Oscillator					7
	1	Need for an oscillator, Generating sine wave using tuned oscillator circuit, Frequency of oscillations in LC circuit	3	Understand the principle and working of oscillators	Descriptive lecture, Theoretical formulatio n	Evaluatio n through: quiz,
	2	Positive feedback in amplifier (Barkhausen criterion), Starting voltage, LC oscillators, Hartley and	4	Explain about the internal circuitry and working of various types of	Theoretical formulatio n , Practical demonstrat	short question s

				oscillators		answers
	3	Basic principle of RC oscillators – RC phase shift oscillator, Wien bridge oscillator, crystal oscillator	4	Identify the different construction and circuit design of oscillators	Descriptive lecture. Theoritical formulatio n ,	Assignment Formative assessmen t
V	Operationa	al amplifier				
	1	Parameters of a general and Ideal operational amplifier	3	Understand the basic parameters,oper a tions and features of	Descriptive lecture. Theoretical formulatio n	Evaluatio n through: quiz,
	2	Inverting and Non- inverting amplifier, Difference and Summing amplifier, Log and antilog amplifiers,	4	Identify the use of Opamp in various circuits	Descriptive lecture. Theoretical formulatio n ,	short question s Descriptiv e answers
	3	Opamp as Voltage follower, Integrator, Differentiator, Comparators and Schmitt trigger	4	Apply the Opamp for different application s	Descriptive lecture. Theoretical formulatio n ,	Formative assessmen t

Course instructor: Dr. V. Shally

Head of the Department: Dr. S. Mary Delphine

B.Sc Physics Semester VI Elective – IV (a): Nanomaterials and its Applications Subject Code: PC1764

No of hours per week	No of credits	Total no of hours	Marks
5	4	75	100

Objectives : 1. To gain knowledge on synthesis and characterization of nanomaterials.

2. To understand the advancements and applications of nanostructures.

СО	Course outcomes	PSOs	CL
No	Upon completion of this course, students will be able to	addressed	
CO-1	Infer the history of nanotechnology and explain the various dimensions of nanostructures	PSO-1	U
CO-2	Apply the characterization techniques of nanomaterials (XRD,SEM,TEM and Analytical Electron Microscope)	PSO-3	Ар
CO-3	Explain the synthesis of nanomaterials and categorize their properties	PSO-2	An
CO-4	Interpret quantum well, quantum wires and quantum dots	PSO-5	Е
CO-5	Explain the carbon nanotubes and its applications.	PSO-6	Е
CO-6	Discuss the applications of nanotechnology in various fields	PSO-4	С

ModulesCredits: 4Total contact hours: 75 (Including assignments and tests)

Unit	Section	Topics	Lect ure hour s	Learning outcome	Pedagogy	Assessment/ Evaluation
Ι	Introd	uction to nanotechnology				
	1	History of nanotechnology – Inorganic nanomaterials - Organic nanomaterials - Techniques in nanotechnology	3	To understand the history of nanotechnology and its techniques	Lecture Discussio n with PPT illustration	Evaluation through short test Multiple choice

	2 3	Dimensionsofnanostructures–Onedimensionalnanoscale–Twodimensionalnanoscalenanoscale–Threedimensional nanoscaleThreeManocrystals. Synthesis ofnanomaterials:sol-gelmethod,ballmilling,		To be able to distinguish the dimensions of nanoscale To know the principles of nanomaterials	discussion with illustration	questions Formative assessment I
	4	colloidal growth Characterization of nanomaterials – X-ray diffraction (XRD) – Scanning Electron Microscope (SEM) – Transmission Electron Microscope (TEM) – Analytical Electron Microscope – Significance of nanoparticles	3	and their synrhesis. To distinguish between nanorings, nanorods, nanoshells and to acquire knowledge on the properties of nanoparticles	Lecture discussion	
II	Quantu 1	m wells, Quantum wires and Introduction – Potential well – Quantum well – Particle in a box – One- dimensional box – Two- dimensional box – Three- dimensional box	Quantu 5	-	Lecture with PPT Illustration	Formative assessment I
	2	Superlattices– Types of Superlattices	3	To understand the concept of Superlattices and its types	session Lecture	
	3	Applications of quantum wells –Quantum wire – Density of States (3D, 2D, 1D, 0D) –Quantum dots – Electrons in mesoscopic structures.	4	To know the density of States, Quantum dots and electron in mesoscopic structure	Lecture with PPT Illustration	
III	Carbon	Nanotubes				·
	1	Discovery of nanotubes –	3 7	Го acquire	Lecture	

		Allotropes of carbon – Structure of carbon nanotubes		knowledgeondiscovery,Allotropesofcarbonandstructureofcarbon nanotubes	Discussion videos ppt	Formative assessment II
	2	Categories of carbon nanotubes : Tours – Buckminster fullerene – Carbon nanohorns – Fullerite – Nanobud	3	To categorize carbon nanotubes	Lecture Discussion videos	
	3	Synthesis of carbon nanotubes: Laser method – Electrolysis – Chemical Vapour Deposition (CVD)	3	Tohaveaknowledgeonsynthesisofcarbon nanotubes	Lecture with PPT Illustration	
	4	Purification of carbon nanotubes and fullerene – Applications of carbon nanotubes.	3	Toacquireknowledgeonpurificationandapplicationsofcarbon nanotubes	Lecture Discussion videos	
	IV Biona	notechnology				
	1	Biomachinery- DNA Nanotechnology	3	To understand the human body system and DNA	Lecture with PPT Illustration	Evaluation through short test
	2	Coding- Polymerisation	3	To acquire the Knowledge on Coding and polymerization	Lecture with PPT Illustration	Formative assessment II
	3	DNA computing – Electronic properties	3	TohaveaknowledgeonDNAcomputingandelectronicproperties	Lecture with Discussion	
	4	Biocomputers –DNA sensing- Self-assembly	3	To know the biological devices and self assembly	Lecture with PPT Illustration	
V	Applic	ations of Nanotechnology				
	1	Nanoelectronics-SingleElectronTransistor-Principle-Coulomb	3	To have a knowledge on Solar power using	Lecture with PPT	Short test Formative
		Blockade		nanotechnology		assessment II

2	NEMS- MEMS- Electronics – Batteries	3	To acquire knowledge on nanocomposites and nanotechnology in tartilas	Brain storming session. Lecture	
3	Water Purification- Ceramic membranes	3	in textiles To understand the nanooptics and nanotechnology in communication	Illustration Lecture with PPT Illustration	
4	Nanomedicine- photodynamic therapy – Tissue welding	3	field To acquire knowledge on MEMS, Photonic	Lecture Discussion	Open Book Test
			crystals and thin film optics	videos	

PO- Program outcome; LO – Learning outcome; Cognitive Level R – Remember; U – Understand; Ap-Apply, An- Analyze; E-Evaluate; C- Create

Semester - VI

Major Core IX

Name of the Course : Digital Systems and Applications

Subject code : PC1762

No. of Hours per week	No of Credits	Total no of Hours	Marks
6	5	90	100

Objectives: 1. To understand the different concepts in digital electronics, digital devices and applications.

2. To prepare students to perform the analysis and design of various digital electronic circuits.

СО	Upon completion of this course, students will be	PSO	CI
CO	able to:	addressed	CL
CO - 1	understand the fundamental concepts and techniques used in Digital Electronics.	PSO - 4	U
CO - 2	perform conversions among different number systems and apply in digital designing.	PSO - 2	Ap
CO - 3	infer the basic logic gates, understand Boolean algebra and simplify simple Boolean functions by using basic Boolean properties.	PSO - 1	U
CO - 4	understand, analyse and design various combinational and sequential circuits. (Flip flop, Counters, MUX, DEMUX, Encoder, Decoder etc.)	PSO - 5	Ap
CO - 5	understand the architecture and operations of microprocessor 8085.	PSO - 7	U
CO - 6	develop the basic idea about the instruction set and data transfer schemes.	PSO - 6	Ар

Total Hours: 90 (Incl. Seminar & Test)

Unit	Section	Description	Lecture hours	Learning outcome	Pagagogy	Assessme nt/Evalua tion
Ι	Logic ga	tes and Boolean Algebra				
	1	Universal logic gates – NOR, NAND	3	To be able to build basic logic gates OR, AND, NOT and Ex-OR using NOR	Lecture	Quiz, Assignme nt, Formative assessment (I)

				1		
				and NAND		
		De Mensenie discusse D 't'	1	only To simulify	Lastern	
	2.	De Morgan's theorems – Positive and	4	To simplify Boolean	Lecture	
		negative logic – Boolean laws and theorems		expressions		
	3.	Sum of products method – truth table to	4	To	Lecture	
	5.	Karnaugh map (Three variable and Four	4	interpret	Lecture	
		variable maps) – Karnaugh simplifications		the result		
		– Don't care conditions		of sum of		
				product		
				method		
				using		
				Karnaugh		
				map		
	4.	Product of sums method - Product of	4	То	PPT,	
		sums simplification.		interpret	Lecture,	
				the result	Group	
				product of	discussion	
				sums		
				method		
				using		
				Karnaugh		
TT	Number	Sustan		map		
II	Number		3	То	PPT,	Quiz,
	1	Binary number system – Binary to decimal conversion	5	understand	rr 1,	Assignme
				the concept		nt,
				of binary		Formative
				number		assessment
				system		(I)
	2.	Decimal to binary – Octal numbers –	4	To be able	Lecture,	
		Hexadecimal numbers		to convert	Problem	
				decimal	solving	
				number		
				into its		
				equivalent		
				binary,		
				hexadecim		
				al and octal		
	2	Dinema addition Dinema	Λ	numbers	T a atur	
	3.	Binary addition – Binary subtraction – 1^{s}	4	To be able to add and		
1	1	and 2s complement method			Group discussion	
				cuntract		
				subtract		
				two binary	, Problem	

		– Serial in - Parallel Out		various types of shift registers	Lecture,	Formative assessment (II),
• •	1	Types of registers – Serial in - Serial Out	2	To analyze		Quiz,
IV	Register	s and Counters		working principle of D flip flop		
	4.	D flip flop	2	To understand the	PPT, Lecture,	
	3.	J-K flip flop – R-S master slave flip flop – J-K master – Slave flip flop	5	To understand the working principle of master slave flip flops	PPT, Lecture, Group discussion	
	2	Frequency divider – Logic gate flip flop – R-S flip flop – Clocked R-S flip flop	4	To distinguish between R-S flip flop and Clocked R- S flip flop	PPT, Lecture,	
<u>III</u>	1	er and flipflops 555 timer – Monostable multivibrator Astable multivibrator	4	To know the working principle of 555 timer	Lecture, Group discussion	Quiz, Assignme nt, Formative assessment (I & II),
	4.	Arithmetic building blocks – Half adder and full adder (truth table and Karnaugh map).	4	To know the basic Arithmetic building blocks	PPT, Lecture, Group discussion	
				and 2s complemen t method		

	2	Parallel in - Serial Out – Parallel in – Parallel Out	4	To distinguish between Parallel in Serial Out – Parallel in Parallel Out shift	PPT, Lecture,	
	3	Ring counter – Decade counter: A MOD - 5 counter	4	registers To know the principle of ring counter and decade counter	PPT, Lecture,	
	4	Shift counter – Shift counter Modulus.	3	To distinguish between various counters	PPT, Lecture,	
V	A-D and	D-A converters				
	1	Variable Resistor Network – Binary Ladders	2	To understand the concept of binary ladders	Lecture, PPT	Group discussion, Formative assessment (II),
	2	D-A converter – A-D converter – Simultaneous conversion	3	To be able to convert D-A and A-D	Lecture.	
	3	Multiplexer – De multiplexer	4	To understand the concept of multiplexer and de multiplexer	Lecture, PPT	
	4	Encoder: Decimal to BCD encoder - Decoders : BCD to decimal decoder - Seven segment decoder	6	To be able to understand the operation of encoder and decoder	Lecture	

Semester

Major Core - VIII

Name of the Course : Mathematical Methods of Physics

Subject code

: PC1761

No of hours per week	No of credits	Total no of hours	Marks
6	6	90	100

СО	Upon completion of this course, students will be able to:	PSO addressed	CL
CO - 1	Illustrate linear dependence and combination of vectors as quantities in Physics.	PSO - 4	U
CO - 2	Evaluate problems in matrices.	PSO - 4	E
CO - 3	Solve ordinary and partial differential equations related to Physical Science.	PSO - 2	С
CO - 4	Adapt Fourier transform technique to obtain the Fourier series of periodic functions of Physics.	PSO - 5	С
CO - 5	Understand and manipulate random variables using the theory of probability including tools of probability transformation and characteristic functions.	PSO - 6	U

Modules

Credit:6

Total Hours:90 (Incl. Seminar & Test)

Unit	Sectio n	Topics	Lecture hours	Learning outcome	Pedagogy	Assesment/E valuation
Ι	Vector A	Analysis				
	1	Point function - Scalar field – Vector field - Gradient of a Scalar field - Physical interpretation	4	To understand basic concepts of scalar field and vector field	Illustration and theoretical derivation	Evaluation through: quiz,
	2	Lamellar Vector field - line, surface and volume integrals -	3	To be able to evaluate line, surface and volume integrals	Illustration, Theoretical formulation Problem Solving	Problem solving

: VI

						Theoretical
	3	Divergence of a vector function – Expression for divergence in Cartesian coordinates	2	To derive expression for divergence of a vector function	Analysis Theoretical formulation and Problem solving	derivation Formative
	4	Curl of vector function – Expression for curl in Cartesian coordinates – Physical significance of curl	4	To understand the physical significance of curl operator and solve physical problems	Theoretical formulation and Problem solving	assessment
	5	Gauss divergence theorem – Green's theorem.	2	To derive Gauss divergence theorem and Green's theorem	Illustration and theoretical derivation	
II	Matrices	5				
	1	Eigen values - Eigen vectors	2	To understand the basic concepts of eigen values and eigen vectors	Theoretical formulation and Problem solving	Evaluation through: quiz,
	2	Characteristic equation of a matrix – Cayley – Hamilton theorem - – Theorems on eigen values and eigen vectors	5	To derive theorems on eigen values and eigen vectors	Illustration and theoretical derivation	Problem solving Theoretical
	3	Diagonalization of matrices – Special type of matrices – Inverse of a matrix	5	To diagonalize and also find inverse of the given matrix	Theoretical formulation and Problem solving	derivation
	4	Non-homogenous linear equations – Cramer's rule for solving non-homogenous linear equations	3	To solve non- homogenous linear equations using Cramer's rule	Illustration, Theoretical formulation and Problem solving	Formative assessment
III	Differen	tial Equations				

	1	First order equations – Variables separable method	4	To use variable separable method to solve first order differential equations	Illustration, Theoretical formulation and Problem solving	Evaluation through: quiz,
	2	Homogenous equations – Non – homogenous equations reducible to homogenous ones –	4	To reduce non homogenous equations to homogenous equations	Illustration, Theoretical formulation and Problem solving	Problem solving Theoretical
	3	Linear differential equations – Equations of first order and higher degrees	4	To understand the solving of first order and higher order differential equations	Illustration, Theoretical formulation and Problem solving	derivation Formative assessment
	4	Physical examples: Radioactive decay process.	3	To apply solving techniques of differential equation to solve physical problems	Illustration, Theoretical formulation and Problem solving	
IV	Fourier	· Analysis		1 *		
	1	Harmonic oscillations – Harmonic synthesis and analysis – Fourier contribution	4	To understand the basic concepts of harmonic synthesis	Illustration, Theoretical formulation	Evaluation through: quiz,
	2	Fourier series –Dirichlet's theorem – Fourier coefficients – Fourier cosine and sine series	5	To evaluate Fourier series	Illustration, Theoretical formulation and Problem solving	Problem solving
	3	Symmetry – Complex form of Fourier series – Change in interval of expansion	4	To apply Fourier theorem for change in interval of expansion	Descriptive lecture and Theoretical formulation	Theoretical derivation
	4	Applications of Fourier series: Sawtooth wave - Half wave rectifier – Full wave rectifier	2	To use Fourier series to evaluate physical problems	Descriptive lecture and Theoretical formulation	Formative assessment
	1	n Variables and Probability			1	1

1	Random Variables – Simple random sample – Mean – Median – Mode – Dispersion	5	To understand basic concepts of random	Illustration, Theoretical formulation	Evaluation through: quiz,
	L		variables		1
2	Elementary properties of probability – Conditional probability – Addition rule of probability – Multiplication law of probability	6	To verify addition rule of probability and multiplication law of probability	and Problem solving	Problem solving Theoretical derivation
3	Probability distribution – Mean, variance and standard deviation of Poisson distribution.	4	To analyze probability distribution and solve physical problems	Illustration, Theoretical formulation	Formative assessment

PO- Program outcome; LO – Learning outcome; Cognitive Level R – Remember; U – Understand; Ap-Apply, An- Analyze; E-Evaluate; C- Create

Semester VI

Major core X: Nuclear Physics

Subject Code: PC1763

No of hours per week	No of credits	Total no of hours	Marks
5	5	75	100

Objective: 1. To enable the students to understand the properties, models and radioactive

reaction of the nucleus.

2.To create awareness on nuclear reactions such as fission, fusion, radiation detectors and elementary particles so that students can shine.

СО	Upon completion of this course the students will be able to :	PSO addressed	CL
CO-1	Define the fundamentals of nuclear matter (properties of nuclei and Nuclear forces)	PSO-2	R
CO- 2	Apply the principles of physics in the measurements of Nuclear size, Nuclear spin, Nuclear energy levels and Nuclear magnetic moment	PSO-1	Ар
CO- 3	Assess radioactivity and various nuclear reactions (nuclear fission and fusion)	PSO-3	E
CO -4	Explain the decay modes, Radiation Detectors and Particle Accelerators (Ionisation chamber,Proportional counter,Geiger Muller counter,Linear accelerator, Cyclotron, Synchro cyclotron, Betatron)	PSO-5	U
CO- 5	Discuss the classification of elementary particles and Quark model	PSO-5	E
CO -6	Analyse the characteristics and behavier of elementary particles and their fundamental interactions	PSO-7	An
CO -7	Develop a deeper understanding of some important applications of nuclear physics in Nuclear Reactor and Source of stellar energy.	PSO-6	С

Modules

T T •4	G		Lecture	Learning	Pedagogy	Assessment/Evaluation
Unit	Section	Topics	Hours	outcomes		
Ι	Proper	ties of Nuclei				
	1	Constituents of nuclei - Isotopes, Isobars, Isotones and mirror nuclei - Nuclear mass and binding energy - Unit of atomic mass - Binding	3	Define the basis of nuclei and stability of nucleus	Lecture discussion	Evaluation Class test, oral question Assignment I
		energy and stability of nucleus				
	2	Mass defect and packing fraction - Binding fraction Vs mass number curve - Nuclear size - Nuclear spin - Nuclear energy levels	3	Apply various Binding energy relations	Derivation and group discussion	
	3	Nuclear magnetic moment - Parity of nuclei - Nuclear quadrupole moment - Statistics of nuclei	3	solution of Nuclear magnetic moment	Derivation, problem solving and group discussion	
	4	Nuclear forces - Liquid drop model - Semi- empherical mass formula - Shell model	3	Apply Nuclear forces in different models	Derivation and group discussion	

Total contact hours: 75 (Including lectures, assignment and tests)

II				Radioactivity		
	1	Radioactivity -	3	Solve	Derivation	
		Radioactive		Radioactive	discussion	Evaluation
		reactions -		reactions		Class test, oral
		Radioactive				question
		decay law -				Assignment
		Statistical nature				
		of radioactivity				I/II
	2	Activity or	3	Define and	Derivation	
		strength of a		derive	and group	
		radio-sample -		Radioactive	discussion	
		Radioactive		decay	problem	
		decay :			solving	
		Conservation				
		laws				
	3	Radioactive	3	Statement	Derivation	
		series:		and proof	and group	
		Displacement		of	discussion	
		law - Successive		displaceme	problem	
		transformation -		nt law	solving	
		Radioactive				
		equilibrium				
	4	Radioact	3	Radioactive	Derivation	
		ive dating: Age		dating and	and group	
		of minerals,		its	discussion	
		rocks - Alpha		applications	problem	
		decay - Beta			solving	
		decay - Gamma				
		decay.				
III			Nu	clear Reaction	S	
-	1	Nuclear	3	Analyse	Derivation	Evaluation
		Reactions:		Conservation		Class test, oral
		Basics -		laws in		question
		Conservation		nuclear		Assignment
		laws in nuclear		Reactions		C
		Reactions -				II
		Energetics of				
		nuclear				
		Reactions				
	2	Cross section of	2	Define and	Derivation	
	-	nuclear	-	derive nuclear		
		Reactions -		Reactions,	discussion	
		Reaction		Reaction		
		mechanisms -		mechanisms		

			1		[1
		Nuclear fission -		&Nuclear		
		Energy released		fission		
		in fission of U-				
		235				
	3	Liquid drop	4	Define and	Derivation	
		theory of fission		Derive	and group	
		- Nuclear chain		Nuclear chain	discussion,	
		reaction -		reaction,	PPT	
		Nuclear Reactor		Types of		
		- Types of		reactor,		
		reactor - Breeder		Breeder		
		reactor - Fission		reactor &		
		bomb		Fission bomb		
	4	Fusion: Thermo	3	Define, derive	Derivation	
	-	nuclear reaction	J.	and apply	and group	
		- Source of		Uncontrolled	discussion	
		stellar energy:			uiscussion	
		Natural fusion -		fusion:		
		Uncontrolled		Hydrogen		
				bomb		
		fusion:				
TX 7		Hydrogen bomb.				
IV	-			ctors and Partic		
	1	Introduction -	3	Discuss	Derivation	Evaluation
		Ionisation		different types	discussion	Class test, oral
		chamber -		of Radiation		question
		Proportional		Detectors		Assignment
		counter - Geiger				II/III
		Muller counter -				
		Neutron				
		detection				
	2	Cloud chamber -	3	Define and	Derivation	
		Scintillation		derive Cloud	and group	
		counter -		chamber &	discussion,	
		Photographic		Scintillation	PPT	
		detection - Solid		counter		
		state track				
		detector				
	3	Semiconductor	3	Define and	Derivation	
		detector -		Derive	and group	
		Particle		different types	discussion	
		accelerators -		of Particle		
		Linear		accelerators		
		accelerator				
	4	Cyclotron -	3	Define,	Derivation	
	-	Synchro	-	derive and	and group	
1					8r	

		Betatron		Cyclotron , Synchro cyclotron and Betatron		
V	Elementary Particles					
	1	Introduction - Fundamental Interactions - Pions and Muons - K mesons – Hyperons, Antiparticles	3	Analyse Fundamental Interactions	Discussion PPT	Evaluation Class test, oral question Assignment III
	2	Classification of elementary particles - Conservation laws - CPT theorem	3	Analyse classification of elementary particles	Derivation and group discussion, PPT	
	3	Resonance particles - Symmetry classification of elementary particles	3	Explain symmetry classification of elementary particles	Derivation and group discussion	
	4	Quark model Unification of interactions - The standard model.	3	Define , derive and apply Quark model	Derivation and group discussion, PPT	

Books:

1. Gupta, A.B. (2015). *Modern Physics*. (2nd ed.). New Delhi: Books and Allied (P) Ltd.

Unit I: Chapter 18 : 18.1-18.3, 18.5-18.16, 18.17, 18.18, 18.18.1, 18.19, 18.19.1 -

18.19.4

Unit II: Chapter 19 : 19.1 - 19.9, 19.11

Unit III: Chapter 20: 20.1-20.16

Unit IV: Chapter 21: 21.1-21.5, 21.7, 21.7.1, 21.7.2, 21.9, 21.11-21.16, 21.17.2, 21.18

Unit V: Chapter 22: 22.1-22.9, 22.10, 22.11-22.14

2. Arthur Beiser. (2006). *Concepts of Modern Physics*. (6th ed.).New Delhi: Tata McGraw - Hill Edition,

Unit II: Chapter 12: 12.4-12.6, Appendix (theory of alpha decay)

Reference Books:

1. Tayal D.C. (2002). *Nuclear Physics*. (1st ed.). New Delhi: Himalaya Publishing House.

2. Roy R.R. and Nigam B.P. (1983). *Nuclear Physics*, (2nd ed.). Bangalore: New age International Ltd.

3. SatyaPrakash, (2004). *Nuclear Physics and Particle Physics*. (1st ed.). New Delhi: S. Sultan Chand & Sons Publications.